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JPL MEMS pumped liquid cooling system @

* Objective

— to develop MEMS based pumped liquid cooling system for
removing over 20 W/cm? from high power density microelectronics
and science payloads considered for future micro/nano sciencecraft.

« Team |
— JPL: G. Birur, P. Shakottai, A. Green, S. Haapanen, & S. Vargo
- SAIC: T. Sur '
— Stanford University: T.Kenny and J. Santiago
— NASA GSFC.: T. Swanson
e Sponsor
— NASA Cross Enterprise Technology Development Program
o Users |

— Code S: Missions to Mars & other planets, SEC missions
— Code Y: Advanced sensors, high power density payload
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ABL

Outline

Background on puspacecraft thermal control
MEMS based picooling

Microchannel heat sink fabrication
Microcooling numerical and experimental results

Conclusions and future work
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JPL uspacecraft thermal control | @’

* Thermal control challenges in future uspacecraft

— Increasing power densities of avionics and science payloads
— Integrating avionics thermal control with the rest of the spacecraft

— Increasing multifunctional nature of the spacecraft
e Current state of the art
— High thermal conductivity materials

— Miniature and micro heat pipes

— Thermoelectric coolers
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Overview of future space missions

JBL
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05-09 User Launches:

*CNSR

-Europa Lander

-Titan Organic Explorer e

‘Venus Sample Return  09-12 User Launches:

*Neptune Orbiter -Micro and Nano-

-Saturn Ring Observer spacecraft
Terrestrial Planet

03-05 User Launches:
*Europa Orbiter
-Solar Probe
‘Discovery
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JBL Future space science missions at JPL

*  Mars missions
- Landers, rovers, in-situ production experiments, and robotic support for human colonization missions
- MER (2003), Mars Orbiter (2005), Mars Mega Lander (2007), Mars umission

*  Missions to comets/asteroids

—  Comet Nucleus Sample Return Mission

—  Asteroid exploration and sample return
*  Missions to other planets
- Europa orbiter/lander

—  Pluto/Kuiper Express (2008)

—  Saturn Ring Observer, Neptune orbiter
e  Other missions

—  Earth orbiting spacecraft/science payload

—  space telescopes, instruments
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ABL MEMS pUmped liquid cooling system conce

ot @&

2-5 cm typical

Interface to spacecraft
thermal energy
management system

Liquid cooling
(evaporator in 2-phase system)

Heat rejection
(condenser in 2-phase system)

Advanced MEMS based thermal technologies needed:
- Microchannels
- Micropumps
- Integrated mcooling system (uvalves, connectors, etc.)
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APL Advantages of MEMS pumped cooling system @

* Increased effectiveness by integration of cooling system with payload.

* Increased freedom in locating electronics or science payload.

* Precision temperature control of payloads by controlling mpump flow
rate. |

- Ability to function in adverse gravity.
* Removal of large heat fluxes over large distances.
- Expected savings in mass and volume of over 25%.

- Expected temperature reduction of over 20%.
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Integrated Thermal Energy Management (ITEM) systems
-IPL for future uspacecraft
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- Microchannel Heat Sink |
JpL o

uchannels

silicon

—— pyrex

ﬂov&f' i \

heaters and thermistors
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dPL o Design parameters

* Heater power (q), area (A,), distance from pchannels (h,)
* Microchannel configuration

— Geometry: width (w,), depth (h,), spacing (w_),
number

— Fin efficiency ()
» Working fluid

- Cp7 p9 V’ “‘
Volumetric flow rate (Q)
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JPL " Fluid performance metrics

s

* Total pressure drop
— Minimize
— Micropump must be able to provide sufficient pressure
to drive fluid through uchannels

* Outlet fluid phase state
— Liquid, no boiling allowed

— Eliminates risk of uchannel dry out and pupump damage
from uncondensed vapor bubbles
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JPL Thermal performance metric @

* Minimize thermal resistance to improve heat sink performance

Resistance | Description Calculation | Typical
(°C/W)

R.ond Conduction from the heater | L/kA 0.0068
through the heat sink interface

R, Convection from heat sink to | 1/h A, >(0.024
the cooling fluid

Ry eat Caloric heating of the cooling | 1/mc, 0.024
fluid

Rtotal 0.1
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Heat sinks, single phase water
adapted from Harms et al. (1997)

JPBL

&

Investigators Substrate | A, (A) |1, h, w.(w,) | q Q Riotar | AP
cm? cm | um | um W cc/s | °C/W | kPa

Tuckerman Si 1.0 1.40 | 302 |50 790 |[8.6 [0.090 |214

(1984) (2.8) (50)

Mahalingam Si 14.44 |5.0 | 1700|200 1050 |63 0.018 | -

(1985) (25) (100)

Kishimoto & Alumina | 16.0 8.6 |400 {800 380 13.3 10.132 | -

Ohsaki (1986) (62) (1740)

Sasaki & Si 2.56 2.4 |[900 |340 416 |- 0.120 | 20

Kishimoto (1986) (4.8) (340)

Riddle et al. Si 1.0 1.5 |[320 |51 2500 | 18.0 [ 0.082 | 500

(1991) (3.0 (53) .

Cuta et al. Cu 4.06 2.05 | 1000 | 270 402.5 | 3.49 | 0.168 | 20.7

(1995) (4.06) (270)

Harms et al. Si 6.25 2.5 11030 | 251 415 46.3 | 0.041 | 30.5

(1997) (6.25) (119) o e
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JBPL uchannel Heat Sink Fabrication Summary @/

* Begin with 4 inch dia., 500 mm thick Silicon wafers.

* Implant heaters and thermistors on back side (Core
Systems, Inc.) and anneal.

* Deposit aluminum tracks and pads to make electrical
connections on back side.

+ Etch the mchannels and holes on front side using DRIE.
* Anodically bond Pyrex7740 glass wafer to front side.
« Dice wafer into three heat sink devices.

*  Epoxy surfboard to Si connect to Al pads with wire bonds.
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- DRIE pchannels

Note rectangular pchannel shape and smooth walls
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‘uchannel heat sink device @

Front side:
Inlet and outlet manifold and 20
uchannels etched in Si

*Pyrex 7740 glass is bonded to the Si &
seals the pchannels

Back side:

*Fluid inlet and outlet holes (4 cm apart)
*Aluminum tracks & pads for electrical
connections to implanted heater strips (20)
and thermistors (4)

*Wire-bonded surfboard with 10 standard
single in-line pins

inlet
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ABL MEMS puinped liquid cooling system tests

pcooling lab in JPL B18-101 | uchannel device, ZIF socket, T/Cs test fixture

Data acquisition software
(LabVIEW control panel)

fe
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Pressure Drop vs. Heat transfer at various

JpL Flow Rates (cc/min) and Temperatures (C) @/
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JBL Comparison of Microhex and Mathcad Analyses

Pressure drop vs. temperature
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-

Power vs. temperature

Flow fixed at 20 cc/min
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JRL ~ Comparison with data @

flow = 16.5 cc/min

pressure = 3097 Psi
2 data points when hol

&
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mn
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J8L '_ ~ Conclusions @

* MEMS based pumped liquid cooling system is a promising
technique for removing heat from high power density
avionics in future psciencecraft.

* Experimental data from silicon uchannel heat sinks shows
that over 25 W/cm? can be removed.

* Thermal and hydraulic models were validated using the
experimental data and will be used designing optimum
channels
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JPL ~ Future Work @ .

- Evaluate and test uypumps suitable for the current application.

- Use our validated models to optimize the next generation
uchannel geometry. Fabricate and test new devices.

- Evaluate an integrated system consisting of uypump with
uchannels.

- Evaluate integrating pcooling system with puspacecraft
electronics.
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